Какой четырёхугольник называется прямоугольником

Определения

Основная часть доказательств основывается на том, что в четырехугольнике сумма углов равна 360 градусам.

Всего насчитывается 7 признаков прямоугольника. Для того, чтобы их применять нужно, прежде всего, вспомнить определения:

Прямоугольник это параллелограмм, у которого все углы прямые.

Параллелограмм это выпуклый четырехугольник, у которого все стороны попарно равны и параллельны.

Для того, чтобы определить выпуклый четырехугольник или нет нужно последовательно проводить через каждую из сторон фигуры линию. Если в каждом из 4 случаев (поскольку сторон 4) вся фигура будет оставаться по одну сторону от линии, то четырехугольник выпуклый.

Видео

Свойства прямоугольника

Свойства прямоугольника можно разбить на две группу: свойства параллелограмма и свойства прямоугольника.

Свойства параллелограмма:

  • Противоположные стороны попарно равны и параллельны.
  • Противоположные углы равны.

Рис. 2. Свойства параллелограмма

Рис. 2. Свойства параллелограмма

Свойства прямоугольника:

  • Все углы равны 90 градусам, что проистекает из определения фигуры.
  • Диагонали прямоугольника разбивает фигуру на два малых равных прямоугольных треугольника. Это свойство легко доказать. Треугольники будут прямоугольными, так как включат в себя по одному углу в 90 градусов. При этом диагональ будет являться общей стороной ,а катеты окажутся равными, так как противоположные стороны прямоугольника попарно равны и параллельны.
  • Диагонали прямоугольника равны.

Рис. 3. Луч

Рис. 3. Луч

Определение и свойства квадрата

Квадрат — это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат — это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Формулы прямоугольника:

Пусть aдлина прямоугольника, b – ширина прямоугольника, d – диагональ и диаметр описанной окружности прямоугольника, R – радиус описанной окружности прямоугольника, P – периметр прямоугольника, S – площадь прямоугольника.

Формула стороны прямоугольника (длины и ширины прямоугольника):

,,

,,

. ,

 . 

Формула диагонали прямоугольника:

,              

d = 2R.

Формулы периметра прямоугольника:

P = 2a + 2b,

P = 2(a + b). 

Формулы площади прямоугольника:

S = a · b. 

Формула радиуса окружности, описанной вокруг прямоугольника:

Прямоугольник  .

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Видео https://youtu.be/_EVDcbOydAI

Найти что-нибудь еще? 
карта сайта

 

Коэффициент востребованности 3 042

Теги