Параллелограмм и его свойства. Признаки параллелограмма

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы смежных углов параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a2 × sinα.
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали. Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные занятия по математике для учеников с 1 по 11 классы!

Видео

Основные признаки

Существует 5 признаков параллелограмма, доказательство которых основано на свойствах прямых и образованных ими углов либо фигур. Выпуклый четырехугольник, вершины которого обозначены МНКП, имеет диагонали МП и НК. Признаки того, что фигура МНКП представляет собой параллелограмм, следующие:

  • попарное равенство противоположных сторон: МН=КП и НК=МП;
  • попарное равенство противоположных углов: МНК=КПМ и НКП=НМП;
  • равенство и параллельность противоположных сторон: МН=КП и МН||КП;
  • пересечение диагоналей в точке, которая делит их пополам;
  • МН2 + КП2 = МН2 + НК2 + КП2 + МП2

Если четырехугольник имеет 2 равные и параллельные стороны, то он представляет собой параллелограмм. Четырехугольник MNPK имеет параллельные и равные MN и KP, отсюда следует доказательство I признака:

  1. Если провести диагональ MP, то она образует треугольники MNP и MPK.
  2. Фигуры имеют общую сторону MP, а MN=KP по условию.
  3. Поскольку прямая MP пересекает параллельные прямые MN и PK, то образуемые этими прямыми накрест лежащие углы равны.
  4. Параллельность других сторон MK и NP при диагонали MP основана на равенстве накрест лежащих углов, поэтому четырехугольник MNPK — параллелограмм.

Если четырехугольник имеет противоположные стороны, которые равны попарно, то он является параллелограммом. Перед тем как доказать, что фигура является параллелограммом, следует провести диагонали. Пошаговое доказательство II признака:

  1. Диагональ, проведенная через вершины фигуры АМКД А и К, образует 2 треугольника АМК и АКД.
  2. Поскольку согласно данным АМ=КД и АД=МК, а сторона АК — общая, значит, треугольники АМК и АКД имеют 3 равные стороны.
  3. Углы АКМ и АКД при параллельных прямых АМ и KД, пересекаемых диагональю АК, соответствуют по величине как накрест лежащие.
  4. По II признаку параллельность прямых АМ и КД, которые равны по условию, позволяет утверждать, что фигура АМКД является параллелограммом.

Доказать деление точкой пересечения каждой из диагоналей фигуры АМКД на равные отрезки позволяет II признак равенства треугольников. При этом AОД и КОМ равны. Следовательно, AО=КО и АО=ДО.

Согласно III признаку, четырехугольник, диагонали которого пересекаются, а точка пересечения делит их пополам, представляет собой параллелограмм. В четырехугольнике MNPQ она обозначена буквой К. Поскольку в ней пересекаются диагонали MP и NQ, то образуемые ими треугольники MNК и КPQ равны по I признаку. Это следует из равенства вертикальных углов MКN и PКQ, а также MК и NК, КP и КQ, которые равны по условию.

В треугольниках MNК и КPQ стороны MN и PQ равны между собой. Углы NMК и КPQ равны как накрест лежащие при MN и PQ и секущей MP. Отсюда следует, что прямые MN||PQ. Итак, четырехугольник MNPQ — это параллелограмм по I признаку, поскольку MN и PQ равны и параллельны.

Как доказать, что фигура параллелограмм

Признаки

  • Первый признак параллелограмма: у выпуклого 4-угольника противоположные отрезки параллельны.

Дан 4-угольник, где AB=CD, BC=AD. Доказать, что AB

Дан 4-угольник, где AB=CD, BC=AD. Доказать, что AB∥CD, BC∥AD.

Проведём диагональ BD. В итоге получим пару одинаковых треугольников, исходя из условий задачи и общего отрезка BD.

Отсюда вытекают равенства: ∠1 = ∠4, ∠2 = ∠3 – подо

Отсюда вытекают равенства: ∠1 = ∠4, ∠2 = ∠3 – подобные треугольники имеют одинаковые по величине углы, образованные подобными сторонами. Значит AB∥CD и BC∥AD (из свойства: если накрест расположенные углы равны, значит прямые будут параллельными).

  • Второй признак – 4-угольник с равными по длине и параллельными противоположными сторонами относится к параллелограмму.

В данном четырёхугольнике BC=AD, BC∥AD. Нужно доказать параллельность AB и CD для подтверждения, что это параллелограмм.

Исходя из условий, понимаем, что BCD и ABD – подобные треугольники. Из условия задачи: BC = AD, BD – общая для обоих, значит, ∠2 = ∠3 – следствие того, что накрест лежащие углы подобные. Из равенства 3-угольников: ∠1 = ∠4 получается, что AB параллельна CD. 

Свойства фигуры

Зная различные свойства четырехугольников, можно решать простые и сложные задачи по геометрии, начиная с определения периметра, заканчивая нахождением координаты вершины параллелограмма. Для решения задач используют 7 основных свойств параллелограмма, учитывая что его стороны попарно образуют:

  • смежные углы, сумма которых составляет 180 градусов;
  • равные отрезки;
  • одинаковые по величине противоположные углы;
  • четырехугольник, сумма углов которого равна 360 градусов;
  • фигуру, диагонали которой пересекаются в точке, разделяющей их на 2 равных отрезка;
  • равнобедренный треугольник, одна из сторон которого является биссектрисой фигуры;
  • симметричные фигуры, дополняемые линией, проходящей через точку пересечения диагоналей.

 Доказать последнее свойство позволяет II признак

Доказать последнее свойство позволяет II признак равенства треугольников. Известен отрезок, принадлежащий линии, проведенной через точку, в которой пересекаются диагонали. В четырехугольнике КМРТ он обозначен НП. Отсюда следует равенство треугольников КОП и НОР, поэтому НО=ОП.

Сумма смежных углов параллелограмма составляет 180 градусов, поскольку они являются односторонними при параллельных прямых. Существует свойство равенства острого угла и образованного высотами тупого угла четырехугольника АВСД. Параллелограмм имеет смежные углы А и Д, а высоты ВМ и ВН проведены из вершины В, поэтому угол МВН в сумме с Д равен 180 градусам.

Доказательство равенства противолежащих сторон и углов фигуры заключается в следующем. Например, диагонали ABCD делят фигуру на 2 равных треугольника, имеющих общую сторону в виде диагонали BD. При этом углы ADВ и ABC при противолежащих вершинах A и C являются накрест лежащими.

Параллелограмм состоит из равных треугольников ABD, BCD и ABC, ACD, образуемых диагоналями AC и ВD, значит AB=CD и AD=BC. Отсюда углы при вершинах A и C, В и D имеют одинаковую величину.

Свойства можно представить в виде формул для решения уравнений и примеров, а также доказать теоретически. Их следует запомнить, чтобы правильно применять на практике. Для решения более сложных задач по геометрии следует доказать основные свойства фигуры.

Признаки параллелограмма

Признак 1. Если в четырехугольнике две стороны параллельны и равны, то этот четырехугольник является параллелограммом.

Доказательство. Рассмотрим параллелограмм ABCD. Пусть AB=CD и AB || CD. Проведем диагональ AC (Рис.4). Поскольку AB || CD, то \( \small \angle 1=\angle 2 \) как накрест лежащие углы − при рассмотрении параллельных прямых AB и CD пересеченных секущей AC. Тогда треугольники ACB и ACD равны, по двум сторонам и углу между ними. Действительно, AB=CD, AC− общая сторона \( \small \angle 1=\angle 2 \). Но тогда \( \small \angle 3=\angle 4. \) Рассмотрим прямые AD и BC, пересеченные секущей AC. Поскольку \( \small \angle 3 \) и \( \small \angle 4 \) являются накрест лежашими углами, то по теореме 1 статьи Параллельные прямые. Признаки параллельности прямых, эти прямые параллельны. Таким образом, в четырехугольнике противоположные стороны попарно параллельны (AB || CD, AD || BC) и, значит, данный четырехугольник параллелограмм.Признак 2.  Если в четырехугольнике противоположны

Признак 2. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник является параллелограммом.

Доказательство. Рассмотрим параллелограмм ABCD (Рис.4). Проведем диагональ AC (Рис.4). Рассмотрим треугольники ACB и ACD. Эти треугольники равны по трем сторонам (см. статью Треугольники. Признаки равенства треугольников). Действительно. AC − общая для этих треугольников и по условию AB = CD, AD = BC. Тогда \( \small \angle 1=\angle 2 \). Отсюда следует AB || CD. Имеем, AB = CD, AB || CD и по признаку 1 четырехугольник ABCD является параллелограммом.Признак 3.  Если в четырехугольнике диагонали пере

Признак 3. Если в четырехугольнике диагонали пересекаются и точкой пересечения разделяются пополам, то данный четырехугольник − параллелограмм.

Доказательство. Рассмотрим четырехугольник ABCD (Рис.5). Пусть диагонали четырехугольника пересекаются в точке O и точкой пересечения делятся пополам:

Углы AOB и COD вертикальные, следовательно \( \small \angle AOB=\angle COD \). Тогда треугольники AOB и COD равны по двум сторонам и углу меду ними:

,

Тогда AB = CD и \( \small \angle 1=\angle 2 \). Но по признаку параллельности прямых следует, что AB || CD (теорема 1 статьи Параллельные прямые. Признаки параллельности прямых). Получили:

и, по признаку 1 четырехугольник ABCD − параллелограмм.Теги

Теги