Ресвератрол и сердечно-сосудистые заболевания

В чём польза витамина Д?

  • Самая важная функция – поддержание нашей костной системы, а именно, сывороточного уровня кальция и фосфора в физиологическом диапазоне. Именно эти минералы способствуют росту костей и минерализации костной ткани. Происходит это благодаря рецепторному воздействию витамина Д в двенадцатиперстной кишке: повышая эффективность абсорбции фосфора и кальция, реабсорбцию кальция в почках из клубочкового фильтрата и дифференцировке предшественников остеокластов в костях. Дефицит витамина Д может привести к пороку развития костей (рахит у детей, остеомаляция1 у взрослых) и проявлениям вторичного гиперпаратиреоза.
  • витамин Д повышает как врожденный, так и приобретенный иммунитет,участвуя в активации иммунных клеток и запуская синтез эндогенных пептидов (дефензинов и кателицидинов) с антиинфекционными и противоопухолевыми свойствами. Также по ряду исследований выявлена взаимосвязь уровня витамина Д и инфекционных заболеваний2. На фоне сниженного уровня витамина Д повышается уровень противовоспалительных цитокинов, что существенно отражается на эффективности иммунного ответа3,4.
  • Недостаточный уровень данного витамина повышает риск развития острых респираторных и кишечных заболеваний. А схемы лечения, включающие восполнение суточной нормы, снижают риск развития осложнений благодаря активации противовоспалительных агентов.
  • Не стоит забывать, что витамин Д3 регулирует активность генов — улучшение показателя витамина Д3 способствует изменению выраженности (экспрессии) генов, связанных с риском развития рака5,6 сердечно-сосудистых заболеваний, аутоиммунных расстройств. 3% генома подвержены влиянию витамина Д.
  • витамин Д очень важен для женщин. Низкий уровень данного витамина у беременных пагубно отражается на имплантации эмбриона. При проведение экстракорпорального оплодотворения (ЭКО) у пациенток с уровнем витамина Д3 в допустимом нормативном коридоре, имплантационная способность эндометрия была выше7. Существует прямая взаимосвязь между уровнем данного витамина в крови плода и матери. Поэтому важно помнить, что недостаток витамина Д3 во время беременности может негативно влиять на развитие иммунной системы, повышать риск развития инфекционных заболеваний; при тяжелых формах дефицита возможно развитие внутриутробного рахита плода8. Также, согласно данным исследования9, низкий уровень витамина у беременных женщин ассоциирован с повышенным риском выкидышей10.

Витамин D3, 500 МЕ, 20 мл, Эвалар

205 ₽

БАД. НЕ ЯВЛЯЕТСЯ ЛЕКАРСТВЕННЫМ СРЕДСТВОМ

Видео

Как действует ресвератрол?

Благотворное воздействие ресвератрола на настроение, тревожность и работу мозга может быть обусловлены рядом механизмов. Сводные результаты исследований позволяют предположить, что ресвератрол оказывает защитное действие против нейродегенеративных заболеваний и может замедлить ухудшение умственной деятельности. Судя по результатам исследований на животных, ресвератрол может защищать от нейронных повреждений при болезни Паркинсона, болезни Хантингтона, рассеянном склерозе, болезни Альцгеймера и иных нейродегенеративных заболеваниях. Результаты двух исследований на живых организмах позволяют предположить, что ресвератрол оказывает антидепрессантное и транквилизирующее действие за счет подавления фосфодиэстеразы-4. В недавно опубликованном исследовании сообщается, что ресвератрол предотвратил и компенсировал оксидантное повреждение белков и липидов во многих областях мозга у животных моделей при маниях. Польза ресвератрола при болезни Альцгеймера может быть обусловлена его влиянием на снижение риска развития метаболического синдрома, что в итоге сокращает воспаление в организме и мозге, способствует расширению мозговых артерий и оказывает непосредственный нейрозащитный эффект в медиальной коре и гипоталамусе. Наконец, ресвератрол может способствовать эпигенетическим изменениям в ДНК, потенциально снижая риск развития различных хронических заболеваний.

Ресвератрол как антиоксидант, способный улучшить обмен оксида азота in vitro

Один из кардиопротекторных механизмов ресвератрола обусловлен его способностью повышать активность эндотелиальной NO-синтазы (еNOS), что способствует вазодилатации (Leikert J.F. et al., 2002; Wallerath T. et al., 2002). Как отмечено ниже, в экспериментах in vitro в условиях, имитирующих сахарный диабет (СД), то есть в присутствии глюкозы в высоких концентрациях, косвенно показано потенциально благотворное влияние ресвератрола на эндотелиальную функцию путем улучшения биодоступности оксида азота (NO).

СД — хорошо известный фактор риска развития ССЗ, характеризующийся хронической гипергликемией, микро- и макрососудис­тыми осложнениями, в том числе ускоренно развивающимся атеросклерозом, накоплением липидов в интиме артерий, хроническим воспалением и оксидативным стрессом (Saad M.I. et al., 2015). Это сочетается с эндотелиальной дисфункцией, провоспалительным фенотипом, внутриклеточным оксидативным стрессом и последующими изменениями метаболического пути NO (Lin K.Y. et al., 2002). Физиологическая роль NO состоит в улучшении вазодилатации и снижении агрегации тромбоцитов, накоплении лейкоцитов и пролиферации гладкомышечных клеток (ГМК), что способствует подавлению развития и прогрессирования атеросклероза (Li H., Förstermann U., 2000). Ресвератрол может проявлять полезные свойства в качестве как антиоксиданта, так и регулятора метаболизма NO. Следует отметить, что ресвератрол существует в двух изомерных формах — транс- и цис-ресвератрол — с превращением транс-изомера в цис-форму при ультрафиолетовом облучении; при этом транс-ресвератрол является основной биологически активной формой (Wallerath T. et al., 2002).

Относительно оксидативного стресса в предыдущих экспериментах показана способность ресвератрола непосредственно поглощать гидроксильные (ОН) и супероксидные (О2) радикалы, генерируемые гамма-радиолизом воды — методом, позволяющим количественно управлять продукцией свободных радикалов. Это поглощающее действие отмечено одновременно при исчезновении радикал-индуцированного транс-ресвератрола и сопутствующего образования продуктов окисления ресвератрола, выявленного методом масс-спектрометрии (в конкретных экспериментальных условиях это в основном пикеатаннол и 3,5-дигидроксибензойная кислота) (Camont L. et al., 2010; 2012). Способность транс-ресвератрола поглощать радикалы проявилась в ингибировании перекисного окисления липидов. Действительно, ресвератрол проявлял защитный эффект против окисления мицелл линолеата, вызванного ОН-радикалами, генерированными радиолизом. Пикеатаннол, тем не менее, проявлял более эффективное антиоксидантное действие, вероятно из-за наличия дополнительной гидроксильной группы; в этих условиях более эффективное поглощение липидных перекисных радикалов LOO отмечено при применении пикеатаннола, нежели ресвератрола (Rhayem Y. et al., 2008).

Ресвератрол — многообещающее вещество

Ресвератрол может оказаться важным нефармакологическим препаратом для приема при многих физических и нейропсихических заболеваниях. Исследования ресвератрола как потенциального препарата при угасании когнитивной функции при болезни Альцгеймера и иных нейродегенеративных заболеваниях, а также депрессии, пока еще находятся на ранней стадии. Сегодня большинство результатов получено от исследований на животных. Проведено лишь несколько исследований на людях, в основном на здоровых. Необходимы масштабные длительные плацебо-контролируемые клинические исследования на людях для оценки безопасности ресвератрола, дальнейшего анализа потенциального взаимодействия с другими натуральными продуктами или лекарствами, выявления препаратов, повышающих биодоступность, а также для определения оптимальных безопасных дозировок при физических и нейропсихических расстройствах.

  1. Adeghate E, Donath T, Adem A. (2013) Alzheimer disease and diabetes mellitus: do they have anything in common? Curr Alzheimer Res.; 10:609–617. 
  2. Amri A, Chaumeil JC, Sfar S, Charrueau C. (2012) Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release.; 158:182–193. 
  3. Baur JA, Sinclair DA. (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov.; 5:493–506. 
  4. Blanchet J, Longpre F, Bureau G, Morissette M, DiPaolo T, et al (2008) Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuropsychopharmacol Biol Psychiatry.; 32:1243–1250. 
  5. Chimento, A., De Amicis, F., Sirianni, R., Stefania, M. et al (2019) Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol  J Mol Sci.; 20(6): 1381.
  6. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun.; 5:3557. 
  7. Cottart CH, Nivet-Antoine V, Beaudeux JL. (2014) Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. Mol Nutr Food Res.; 58:7–21. 
  8. De Santi SC, Pietrabissa A, Spisni R, Mosca F, Pacifici GM. (2000) Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids. Xenobiotica.; 30:857–866.
  9. Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V., et al (2019) Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer’s Disease. Int J Mol Sci.;20(20). pii: E5090. 
  10. Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, et al (2019) Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol’s Anticancer Activity. Medicines (Basel). 13;6(1). pii: E24.
  11. Foti Cuzzola V, Ciurleo R, Giacoppo S, Marino S, Bramanti P.(2011) Role of resveratrol and its analogues in the treatment of neurodegenerative diseases: focus on recent discoveries. CNS Neurol Disord Drug Targets.; 10:849–862. 
  12. Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, et al (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res.; 55:1169–1176. 
  13. Kennedy DO, Wightman EL, Reay JL, Lietz G, Okello EJ, et al (2010) Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr.; 91:1590–1597. 
  14. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J.; 26:3169–3179. 
  15. Kumar P, Padi SS, Naidu PS, Kumar A. (2006) Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol. 17:485–492. 
  16. La Porte C, Voduc N, Zhang G, Seguin I, Tardiff D, Singhal N, Cameron DW. (2010) Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet.; 49:449–454. 
  17. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature.; 489:318–321. 
  18. Maturitas. 2014 Mar;77(3):209-20. Phytoestrogens and cognitive function: a review. Soni M1, Rahardjo TB2, Soekardi R2, Sulistyowati Y2, Lestariningsih2, Yesufu-Udechuku A3, Irsan A4, Hogervorst E5.
  19. Menegas S, Ferreira CL, Cararo JH, Gava FF, et al (2019) Resveratrol protects the brain against oxidative damage in a dopaminergic animal model of mania. Metab Brain Dis.;34(3):941-950.
  20. Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev.; 11:390–398. 
  21. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, et al (2011) Strong R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci.; 66:191–201. 
  22. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA., et al (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation. 2017 Jan 3;14(1):1. 
  23. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab.; 8:157–168. 
  24. Popat R, Plesner T, Davies F, Cook G, Cook M, et al (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol.; 160:714–717. 
  25. Santos AC, Veiga F, Ribeiro AJ. (2011) New delivery systems to improve the bioavailability of resveratrol. Expert Opin Drug Deliv. 2011 Aug;8(8):973-90. 
  26. Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A. (2010) Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol.; 30:328–339. 
  27. Smoliga JM, Colombo ES, Campen MJ. (2013) A healthier approach to clinical trials evaluating resveratrol for primary prevention of age-related diseases in healthy populations. Aging (Albany NY).; 5:495–506. 
  28. Soni M, White LR, Kridawati A, Bandelow S, Hogervorst E. (2016) Phytoestrogen consumption and risk for cognitive decline and dementia: With consideration of thyroid status and other possible mediators. J Steroid Biochem Mol Biol.;160:67-77.
  29. Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, et al (2013) Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci.; 68:6–16. 
  30. Sun AY, Wang Q, Simonyi A, Sun GY. (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol.; 41:375–383. 
  31. Zhu X, Li W, Li Y, Xu W, Yuan Y, et al (2019) The antidepressant- and anxiolytic-like effects of resveratrol: Involvement of phosphodiesterase-4D inhibition. Neuropharmacology. 15;153:20-31.
  32. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J. et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease.  Neurology. 2015 Oct 20;85(16):1383-91. 
  33. Wang F, Wang J, An J, Yuan G, Hao X, Zhang Y., (2018) Resveratrol ameliorates depressive disorder through the NETRIN1-mediated extracellular signal-regulated kinase/cAMP signal transduction pathway. Mol Med Rep.;17(3):4611-4618.
  34. Wightman EL, Haskell-Ramsay CF, Reay JL, Williamson G, Dew T., et al (2015) The effects of chronic trans-resveratrol supplementation on aspects of cognitive function, mood, sleep, health and cerebral blood flow in healthy, young humans. Br J Nutr. 14;114(9):1427-37.
  35. Wightman EL, Reay JL, Haskell CF, Williamson G, Dew TP, Kennedy DO. (2014) Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation. Br J Nutr.; 112:203–213. 
  36. Witte AV, Kerti L, Margulies DS, Floel A. (2014) Effects of Resveratrol on Memory Performance, Hippocampal Functional Connectivity, and Glucose Metabolism in Healthy Older Adults. J Neurosci.; 34:7862–7870. 
  37. Zaw, T., Howe, P., Wong, R. (2017) Does phytoestrogen supplementation improve cognition in humans? A systematic review. Ann N Y Acad Sci.;1403(1):150-163.

Теги